■ TRMS MULTIMETER

C.A 5271

ENGLISH

User's manual

PRECAUTIONS FOR USE

This instrument is compliant with the NF EN 61010-1 + NF EN 61010-2-030 safety standard for 1000 V voltages in category III or 600 V in category IV at an altitude below 2000 m, indoors, and with a maximum pollution level of 2.

Failure to comply with safety instructions can create a risk of electric shock, fire, explosion and destruction of the instrument or the installations.

- Do not use the instrument in an explosive atmosphere or in the presence of inflammable gas or smoke.
- Do not use the instrument on networks with a rated voltage or category higher than those mentioned.
- Respect the maximum rated voltages and currents between terminals and in relation to the earth.
- Do not use the instrument if it seems damaged, incomplete or incorrectly closed.
- Before each use, check the condition of the cable insulation, the unit and the accessories. All elements on which the insulation is damaged (even partially) must be put out of service for repair or disposed of as waste.
- Use cables and accessories for voltages according to IEC 61010-031 and measurement categories at least equal to those of the instrument.
- Respect the environmental conditions of use.
- Strictly comply with the fuse specifications. Disconnect all cables before opening the fuse access cover.
- Do not modify the instrument and do not replace components using equivalent parts. Repairs and adjustments must be carried out by qualified, approved personnel.
- Replace the battery as soon as the symbol appears on the display. Disconnect all cables before opening the battery access cover.
- Use personal protection equipment when conditions require it.
- Do not place your hands close to instrument terminals that are in use.
- When handling sensors or test probes, do not place fingers beyond the physical finger guard.

MEASUREMENT CATEGORIES

CAT II: Test and measurement circuits directly connected to points of use (power outlets and other similar points) on the low-voltage network.

E.g. Measurements on circuits in network for household appliances, portable tools and other similar instruments.

CAT III: Test and measurement circuits connected to parts of the building's low-voltage network installation.

E.g. Measurements on distribution switchboards (including secondary meters), the circuit breakers, cabling including cables, busbars, junction boxes, circuit breakers, power outlets in the fixed installation and industrial instruments and other equipment such as motors permanently connected to the fixed installation

CAT IV: Test and measurement circuits connected to the source of the building's low-voltage network installation.

E.g. Measurement on equipment installed upstream of the main fuse or building installation cut-off switch.

You have just purchased a C.A 5271 multimeter and we thank you for your confidence in our products.

To obtain the best service from your instrument:

- Read these instructions carefully;
- Respect the precautions for use.

Meanings of the symbols used on the instrument.

CONTENTS

1. OVER	VIEW	4
1.1	The display	4
1.2.	The keys	
1.3.	The switch	
1.4.	The terminals	
2 Hea		
2.1	First use	6
2.2	Starting up the multimeter	
2.3	Turning off the multimeter	7
2.4	The stand	7
3. Functi	ions	7
3.1	Switch functions	7
3.2	Key functions	10
4. Specif	fications	11
4.1	Reference conditions	11
4.2	Specifications of the reference conditions	11
4.3	Operating conditions	15
4.4	Construction specifications	15
4.5	Power supply	15
4.6	Compliance with international standards	15
4.7	Variations in the field of use	16
5. Mainte	enance	17
5.1	Cleaning	17
5.2	Replacing the battery	17
5.3	Replacing the fuse	17
5.4	Metrology verification	17
5.5	Repair	17
6. Warra	nty	18
7 To ord	der	18

1. OVERVIEW

The C.A 5271 is a stand-alone portable digital multimeter specially designed to combine all the functions for measurement of the following electrical quantities in a single instrument:

- AC voltage measurement with low input impedance (voltage measurements for electrical and electrical engineering applications)
- AC or DC voltage measurement with high input impedance (voltage measurement for electronics)
- Resistance measurement
- Audible continuity measurement
- Measurement and testing of semiconductor junctions
- AC or DC current measurement

1.1 The display

The multimeter's display allows users to:

- Display the functions: ~V_Low2

Show an analogue view of the measured parameter by means of the bargraph:

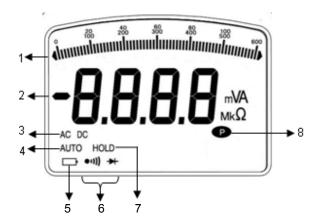


Figure 1: the display

N°.	Function
1	Bargraph
2	Main display (values and measurement units)
3	Type of measurement
4	Selection of the measurement scale.
5	Low-battery indicator
6	Audible continuity measurement Measurement and testing of semiconductor junctions
7	Display of selected modes
8	Permanent mode: automatic instrument shut-down deactivated

1.1.1 The display symbols

Symbols	Description	
AC	Measurement of the AC signal	
DC	Measurement of the DC signal	
AUTO	Auto-ranging	
HOLD	Memorisation and display of memorised values	
O.L	Measurement capacities exceeded	

V	Volt
Α	Ampere
Ω	Ohm
m	Symbol of the milli- prefix
k	Symbol of the kilo- prefix
M	Symbol of the mega- prefix
•11))	Audible continuity measurement symbol
→	Symbol for measurement and testing of semiconductor junctions
P	Permanent mode
	Low-battery indicator

1.1.2 Measurement capacities exceeded (O.L)

O.L (*Over Load*) is displayed when the measured signal exceeds the capacity of the instrument's scale There are two exceptions:

1000 V voltage range
 10 A range
 "OL" from 1050 V
 "OL" from 20 A

1.2. The keys

The keyboard has 2 keys: MODE AC/DC and HOLD. These are the keys:

Figure 2: the keyboard keys

N°	Function
1	Selection of the display mode
2	Memorisation of the values and display mode Activation or deactivation of the automatic instrument shut-down

1.3. The switch

The switch has 6 positions. The functions are described in the table below:

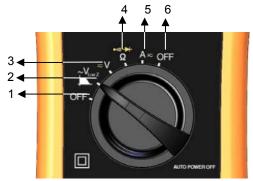


Figure 3: the switch

N°	Function
1 and 6	OFF Mode - Multimeter shut down
2	AC voltage measurement with low impedance (V _{LowZ})
3	AC, DC voltage measurement with high impedance (V)
4	Resistance measurement (Ω) Audible continuity measurement Diode test
5	AC, DC current measurement (A)

1.4. The terminals

These are the multimeter terminals:

Figure 4: the terminals

N°.	Input
1	6 A,10 A current
2	Common
3	Other measurements

2. USE

2.1 First use

Fit the battery shipped with the instrument as follows:

- 1. Using a screw driver, unscrew the four screws on the cover (item 1) located at the rear of the unit;
- 2. Place the battery in its housing (item 2) while respecting the polarity;
- 3. Screw the cover back on.

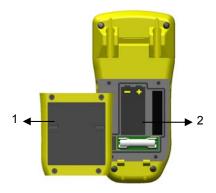


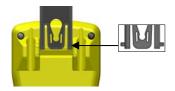
Figure 5: access to the battery

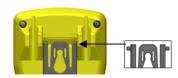
2.2 Starting up the multimeter

- The switch is in the OFF position. Turn the switch to the function of your choice. All the display segments appear for a few seconds, then the screen for the selected function is displayed. The multimeter is now ready for measurements.
- Le commutateur est sur une autre position : appuyez sur la touche

2.3 Turning off the multimeter

The multimeter can be turned off either manually by returning the switch to the OFF position, or automatically after ten minutes without use. After nine minutes an intermittent sound alarm is triggered until the instrument is shut down. Once the


instrument is shut down, to reactivate it press the key or turn the switch by at least one position. The latter method cancels the active functions.


2.4 The stand

There are two stand positions, one for suspending the multimeter (position 1) and the other providing a stand (position 2). To change the stand position, proceed as follows:

Position 1: fit the stand studs into the upper holes located on the rear of the unit:

Position 2: fit the stand studs into the lower holes located on the rear of the unit:

3. FUNCTIONS

3.1 Switch functions

or Λ function, turn the switch to the selected function position. Every position To access the (except OFF) is confirmed by a beep.

When the quantity V or A is selected, the multimeter is in AUTO AC/DC. It then determines whether the measurement is an AC or DC measurement. The larger component is the one displayed. You can deactivate this automatic function and force

MODE AC or DC coupling by pressing the key. To reactivate the function, you must turn the switch and then set it to V or A again, depending on the case.

3.1.1 Voltage measurement

The instrument measures the following types of voltages:

- DC voltage with high impedance (DC);
- AC voltage with high impedance (AC);
- AC voltage with low impedance (V_{LowZ})

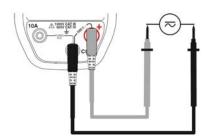
In all cases "O.L " displays in excess of 1050 V and a beep sounds when the measurement exceeds 600 V.

 V_{LowZ} : This position is designed for measurements on electrical installations. The input impedance < 1 M Ω is used to avoid measuring "phantom" voltages caused by coupling between the lines.

Thanks to the low pass filter, it is possible to measure the RMS voltage supplied by an MLI variable speed drive (for asynchronous motors).

 \triangle In V_{LowZ}, the measurement signal goes through the low pass filter with a cut-off frequency of < 300 Hz. When measuring a voltage with a frequency in excess of 150 Hz, it is considerably reduced and therefore a significant error can occur. In this case the position which uses the entire bandwidth should be used.

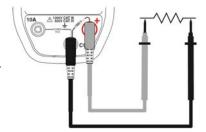
To measure a voltage, proceed as follows:


1. Set the switch to V_{LowZ} or V:

2. Select the type of signal (AC, DC) by pressing

Depending on your selection, the screen will display AC or DC.

- 3. Connect the black lead to the COM terminal and the red lead to "+";
- 4. Place the test probes on the terminals of the circuit to be measured;
- 5. Read the measurement indicated on the display


3.1.2 Resistance measurement

To measure the resistance, proceed as follows:

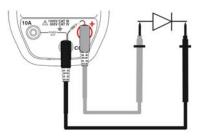
- 1. Set the switch to Ω
- 2. Connect the black lead to the COM terminal and the red lead to "+";
- 3. Place the test probes on the terminals of the component;

Remark: all resistance measurements must be performed with the power off.

- 4. Read the measurement indicated on the display.
- 5. "O.L" is displayed if the circuit is open.

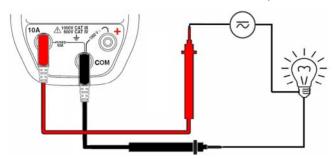
3.1.3 Audible continuity measurement

For audible continuity measurement, proceed as follows:


- 1. Set the switch to Ω :
- 2. Press Ac/DC. The symbol is displayed;
- 3. Connect the black lead to the **COM** terminal and the red lead to "+";
- 4. Place the test probes on the terminals of the circuit to be measured;
- 5. Read the measurement indicated on the display.
- 6. "O.L" is displayed if the circuit is open.

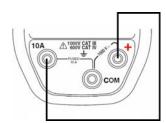
3.1.4 Diode test

To measure and check a semiconductor junction, proceed as follows:


- Set the switch to
- 2. Press twice on _____. The ____ symbol is displayed;
- 3. Connect the black lead to the **COM** terminal and the red lead to "+";
- 4. Place the test probes on the terminals of the component;
- 5. Read the junction threshold voltage measurement indicated on the display.
- 6. "O.L" is displayed if the circuit is open.

3.1.5 Current measurement

To measure the current:


- Measurement in A≂
- 1. Set the switch to A=
- 2. Select the type of signal (AC, DC) by pressing Depending on your selection, the screen will display AC, DC.
- 3. Connect the black lead to the COM terminal and the red lead to "10A";
- 4. Place the test probes in series on the circuit between the source and the load;

- 5. Read the measurement indicated on the display.
- 6. "O.L" is displayed if I > 20 A.

Detection of fuse tripping - or meltdown:

If the fuse has melted, the circuit between COM and the 10 A socket is cut. The display shows zero.

- 1. Set the switch to Ω .
- 2. Connect the V socket to the 10 A socket (see above); leave the "COM" socket free.
- 3. The display should show a result $< 2 \Omega$, otherwise replace the fuse.

3.2 Key functions

The functions and can be accessed by pressing a key repeatedly, using short or long presses. Every push on a key is validated by a sound signal.

3.2.1 MODE AC/DC Key

When the quantity V or A is selected, the multimeter is in AUTO AC/DC. It then determines whether the measurement is an AC or DC measurement. The large<u>r component</u> is the one displayed. You can deactivate this automatic function and force

AC or DC coupling by pressing the Key

This key is used to select the kind of display and the display mode of the measurements.

Type of press	(Resulting action	
short on MODE AC/DC	≂V A ~	> changes the type of measurement : AC or DC.	
	Ω	 selects audible continuity measurement and testing of a semiconductor junction returns to resistance measurement 	

3.2.2 HOLD Key

This key is used to memorise the measurements and quantities or to deactivate the automatic power-off function on the instrument.

Type of press	Φ	Resulting action	
short on HOLD	~V _{Low}	 memorises a measurement status at a given moment and then makes it possible to view them successively on the display. The bargraph continues to operate normally (even in Hold). exits from the mode. 	
long (> 2 sec) on HOLD		activates or deactivates the auto power-off function on the instrument (<i>AUTO OFF</i>). When 'auto off' is deactivated the symbol is displayed. When auto power-off is activated, the display shows "APO on"; otherwise it displays "APO off".	
		 When the automatic shut off, the second display will temporarily display "APO Off." When the automatic shutoff is activated, the second display will temporarily display "APO on." 	

4. SPECIFICATIONS

4.1 Reference conditions

Influencing quantities:	Reference conditions	
Temperature	23° C ± 5° C	
Relative humidity	45 % to 75 %	
Power supply voltage	9 V ± 1 V	
Frequency domain of the applied signal	40 Hz to 1 kHz	
Absence of electric field		

4.2 Specifications of the reference conditions

X % of the reading (R) \pm Y counts (D). Uncertainties are given in:

When the frequency exceeds 1 kHz, apply the formula given in the tables

X % R + Y % x [F (kHz) - 0.4] R ± D.

where:

- Reading

"R", "D", the measurement count equivalent to the resolution of the display range, "F" in kHz. - Digit

- Frequency

4.2.1 DC Voltages (V DC)

Range	Specified measurement range	Resolution	Uncertainty (±)	Input resistance	
600 mV	0 – 600.0 mV	0.1 mV	0.5 % L + 2 D		
6 V	6 V 0 – 6.000 V				
60 V (*)	0 – 60.00 V	0.01 V	0.2 % L + 2 D	10 ΜΩ	
600 V	0 – 600.0 V	0.1 V	0.2 % L + 2 D		
1000 V	0 – 1000.0 V	1 V			

^(*) Input impedance \approx 10 M Ω // 50 pF

4.2.2 AC Voltages

V_{LowZ} AC

The bandwidth is reduced to 300 Hz -3 dB.

Range	Specified measurement range	Resolution	Uncertainty (±)	Additional uncertainty F(Hz)	Input Impedance	Crest factor
600 mV	60 - 600 mV	0.1 mV	1.2 % R + 5 D			3 at 500 mV
6 V	0.6 - 6 V	0.001 V		45 < F < 65 Hz : 0.3 % R		3 at 5 V
60 V	6 - 60 V	0.01 V		at 100 Hz : 0.7 % R at 150 Hz : 1.8 % R	520 kΩ // < 50 pF	3 at 50 V
600 V	60 - 600 V	0.1 V	1.2 % R + 3 D	at 300 Hz : 30 % R		3 at 500 V
1000 V	60 - 1000 V	1 V				1.42 at 1000 V

⁻ Secondary measurements and displays: frequency (AC coupling): Fmax \leq 500 Hz

V AC True RMS

Range	Specified measurement	Resolution	Uncertainty (±)		Bandwidth	Input	Crest factor
Range	range 2)	Resolution	40 to 400 Hz	0.4 to 3 kHz	Bandwidth	impedance	Crest factor
600 mV	60 - 600 mV	0.1 mV	1.2 % R + 5 D	1.2 % R + 0.5 % x [F (kHz) - 0.4] R + 5 D			3 at 500 mV
6 V	0.6 - 6 V	0.001 V			40.11-	40.040.//	3 at 5 V
60 V	6 - 60 V	0.01 V	1.2 % R + 0.5 % x [F	40 Hz - 3 kHz	10 MΩ // < 50 pF	3 at 50 V	
600 V	60 - 600 V	0.1 V	1.2 % R + 3 D	(kHz) - 0.4] R + 3 D			3 at 500 V
1000 V 1)	60 - 1000 V	1 V					1.42 at 1000 V

¹⁾ The display shows "+OL" in excess of +1050 V and "-OL" in excess of -1050 V or 1050 Vrms.

²⁾ From 1 kHz, the measurement must exceed 15 % of the range or if the current or voltage value is forced to zero, the freq. is not determined "----- ".

⁻ Secondary measurements and displays: frequency (AC coupling): Fmax \leq 3 kHz

4.2.3 Resistance

<u>Special reference conditions</u>: the input (+, COM) must not have been overloaded following the accidental application of voltage on the input terminals when the switch is on the Ω position. If this is the case, the return to normal can take about ten minutes.

Range	Specified measurement range ²⁾	Resolution	Uncertainty (±)	Measurement current	Voltage in open circuit
600 Ω	0 – 600.0 Ω *	0.1 Ω	1 % R + 3 D	≈ 1 mA	
6 kΩ	0 – 6.000 kΩ	0.001 kΩ		≈ 120 µA	
60 kΩ	0 – 60.00 kΩ	0.01 kΩ	1 % R + 2 D	≈ 12 µA	< 5 V
600 kΩ	0 – 600.0 kΩ	0.1 kΩ		≈ 1.2 µA	13 V
6 ΜΩ	0 – 6.000 ΜΩ	0.001 ΜΩ	1.5 % R + 3 D	≈ 120 nA	
60 MΩ	0 – 60.00 ΜΩ	0.01 ΜΩ	3 % R + 5 D	≈ 30 nA	

4.2.4 Audible continuity

Response time < 100 ms

Range	Resolution	Uncertainty (±)	Uncertainty on measurement (±)	Voltage in open circuit	Meas. current
600 Ω	0.1 Ω	Beep trigger $< 30 \Omega + 3 \Omega$	1 % R + 3 D	< 5 V	≈ 1.1 mA

4.2.5 Diode test

Range	Resolution	Uncertainty (±)	Uncertainty on measurement (±)	Voltage in open circuit	Meas. current
6 V	1 mV	Beep trigger < 40 mV + 10 mV	1 % R + 3 D	< 5 V	< 1.1 mA

4.2.6 Operation of the beep

Beep indicating a valid key → high sound	4 kHz, 100 ms
Beep indicating an invalid key → low sound	1 kHz, 100 ms
Successive beeps for 30 seconds ending with a long beep indicating that the instrument is being shut down \rightarrow medium sound	2 kHz 100 ms
3 successive beeps with a space of 1 second in between (beep beep beep gap - beep beep beep) indicating that the danger-level threshold has been exceeded → medium sound	2 kHz, 100 ms
2 successive beeps (beep beep) indicating MIN, MAX recording: —> medium sound	2 kHz, 100 ms
Current > 10 A	4 kHz, 100 ms

4.2.7 DC Currents (10A DC)

Range	Specified measurement range ²⁾	Resolution	Uncertainty (±)	Voltage drop	Protection
6 A	0,020 – 6,000 A	0.001 A	0.8 % R + 3 D	0.05 V / A	Fast fuse
10 A / 20 A *	0,200 – 20,00 A	0.01 A	0.8 % R + 2 D	0.03 V / A	11 A / 1000 V

^(*) Admissible overload: 10 A to 20 A for 30s max. with a 5 min pause between 2 meas. Ambient temp. 35° C max.

4.2.8 AC Currents (10A AC)

Range	Specified measurement range ²⁾	Resolution	Uncertainty (±)	Crest factor	Voltage drop	Protection
6 A	0,020 – 6,000 A	0.001 A	40 Hz to 1 kHz 1.2 % R + 5 D	2.8 at 5 A	0.05.1// m/	Fast fuse
10 A / 20 A *	0,200 – 20,00 A	0.01 A	40 Hz to 1 kHz 1 % R + 3 D	3.7 at 8 A	- 0.05 V / mA	11 A / 1000 V

^(*) Admissible overload: 10 A to 20 A for 30 s. max. with a 5 min pause between 2 meas. Ambient temp. 35° C max.

4.3 Operating conditions

Operating conditions	in use	in storage	
Temperature	-10° C to 50° C	-20° C to 70° C	
Relative humidity (RH)	≤ 80 % RH at 50° C	≤ 90 % RH (→ 45° C)	

4.4 Construction specifications

Box	rigid case with yellow, elastomer thermo-adhesive over-moulding		
Screen	LCD Display		
	63-element bargraph		
Resolution	6000 pts		
Keyboard	Keys: 2 function keys		
	Switches: 6 positions, including 4 functions		
Terminals	1 current connector (10 A)		
	1 cold-point connector (COM)		
	1 connector for all measurements except amps (+)		
Stand	to hold the instrument:		
	in a position at 50° from horizontal		
	attached in a vertical position		
Cover	to access the instrument's batteries and fuses		
Dimensions	H 190 x W 90 x D 45 mm		
Weight	400 g (with the battery and fuses)		

4.5 Power supply

Battery life	> 150 hrs
Battery	9V 6F22
Auto power-off time	after 10 minutes without use
Power consumed in stand-by mode	< 5 µA
Low-battery indication threshold	6.3 V ± 0.3 V

4.6 Compliance with international standards

Electrical safety	Application of safety rules in compliance with standards NF EN 61010-1 + NF EN 61010-2-030					
	1000V, CAT III - 600V CAT IV, pollution level 2, double insulation.					
Electromagnetic compatibility	Compliance with the NF EN 61326-1 and NF EN 61326-2-2 standards					
	Emission:	class B				
	Immunity:					
	Electrical discharge:	4 kV on contact, aptitude criterion B; 8 kV in the air, aptitude criterion B				
	Resistance to radiated fields:	10 V/m, aptitude criterion B				
	Resistance to rapid transients: 1 kV, aptitude criterion B					
	Conducted disturbances:	10 V/m, aptitude criterion A				
Mechanical strength	Free fall:	1 m (tested in compliance with the				
		IEC 68-2-32 standard)				
	Shocks:	0.5 J (tested in compliance with the IEC 68-2-27 standard)				
Ingress protection	IP 54	in compliance with standard NF EN 60529				

4.7 Variations in the operating range

Influencing quantity	Range of Influence	Influenced quantity	Tvr	Typical		
3 111 20	. tange of initiatine	initiacitoca quantity	influence	MAX		
Battery voltage	7.5 V to 10 V	all	< 1 D	0.2 % R + 1 D		
		V DC mV	0.01 % R ± 0.2 D / 1° C	0.02 % R ± 0.25 D / 1° C		
		VAC mV, V _{LowZ} mV	0.08 % R ± 0.2 D / 1° C	0.15 % R ± 0.25 D / 1° C		
		V DC	0.01 % R ± 0.1 D / 1° C	0.05 % R ± 0.1 D / 1° C		
		VAC and VAC+DC		0.15 % R ± 0.1 D / 1° C		
		A DC	0.05 % R ± 0.1 D / 1° C	0.1 % R ± 0.1 D / 1° C		
		AAC and AAC+DC	0.08 % R ± 0.1 D / 1° C	0.12 % R ± 0.1 D / 1° C		
T	-10° C 18		0.01 % R ± 0.1 D / 1° C	0.1 % R / 1° C		
Temperature	28 50° C	Ω	0.05 % R / 1° C	0.1 % R / 1° C		
		60 MΩ		0.3 % R / 1° C		
		μF		0.2 % R ± 0.1 D / 1° C		
		mF		0.6 % R ± 0.1 D / 1° C		
		Hz		0.01 % R / 1° C		
		Temp.		± 2° C + 0.05 % R / 1° C		
		Stabilisation time	≈ 90 min	2 hrs		
		V				
		Α				
Humidity (without	10 % 80 % RH	→	0	0		
condensation)		Ω (*)				
		Hz				
	1 kHz 3 kHz			4 % R		
Frequency	3 kHz 10 kHz	V AC		6 % R		
	80 to 1000 MHz		000 =	900 D		
	10 V/m		300 D	120 MHz <freq <170="" mhz<="" td=""></freq>		
Immunity to Radiated fields	1000 to 2000 MHz at 3 V/m	A range 10 A	50 D	Compliance with the standard: NF EN 61326 -1 and NF EN 61326-2-2		
	2000 to 2700 MHz at 1 V/m		30 D	Compliance with the standard: NF EN 61326 -2-2 and NF EN 61326-2-2		

^(*) excluding the 60 $\text{M}\Omega$ range

5. MAINTENANCE

For maintenance, only use the specified spare parts.

5.1 Cleaning

- Unplug all connections from the instrument and place the switch in the OFF position.
- Use a soft cloth slightly moistened with soapy water. Rinse with a damp cloth and dry quickly with a dry cloth or pulsed air.
- Make sure no foreign bodies hinder the operation of the cable fitting system.

5.2 Replacing the battery

The symbol indicates that the battery is low. When this symbol appears on the display, the instrument will operate for a further 20 hours before shutting down.

To replace the battery, proceed as follows:

- 1. Set the switch to OFF.
- 2. Disconnect the measurement cables from the input terminals.
- 3. Using a screwdriver, unscrew the four screws retaining the cover located behind the unit.
- 4. Replace the used battery.
- 5. Screw the cover back on.

5.3 Replacing the fuse

To replace the large fuse: size 10 x 38 type HRC, 11 A, 1000 V, 30 kA, proceed as follows:

- 1. Follow steps 1 to 3 of the procedure described above (§ 5.2).
- 2. Remove the defective fuses by levering them out of their housing with a screwdriver. Use the screwdriver to lever the fuses to extract the fuse.
- 3. Fit new fuse.
- 4. Screw the cover back on.

5.4 Metrology verification

- - -

This instrument should be checked at least once a year. For checking and calibration, contact one of our accredited metrology laboratories (information and contact details available on request), at our Chauvin Arnoux subsidiary or the branch in your country.

Like all measuring or testing devices, the instrument must be checked regularly.

5.5 Repair

For all repairs before or after expiry of warranty, please return the device to your distributor.

6. WARRANTY

Unless explicitly stated to the contrary, our warranty period is **three years** from the date the equipment is made available. Excerpt from our General Sales Terms and Conditions sent on request. The warranty will not apply in the event of:

- Inappropriate use of the equipment or use with incompatible equipment;
- Modifications made to the equipment without the explicit authorisation of the manufacturer's technical department;
- Work carried out on the instrument by a person not approved by the manufacturer;
- An adaptation for a specific application not specified in the definition of the equipment or not indicated in the operating instructions;
- Damage due to shocks, falls or flooding.

7. TO ORDER

The C.A 5271

The multimeter is delivered with:

- Operating instructions on CD ROM in 5 languages
- Quick start guide in 5 languages
- Alkaline 6LF22 9 V battery
- One 1.5 m red straight/elbowed cable
- One 1.5 m black straight/elbowed cable
- CATIV 1 kV red test probe
- CATIV 1 kV black test probe

09 - 2012 X03705B01 - Ed. 1

DEUTSCHLAND - Chauvin Arnoux GmbH

Straßburger Str. 34 - 77694 Kehl / Rhein Tel.: (07851) 99 26-0 - Fax: (07851) 99 26-60

ESPAÑA - Chauvin Arnoux Ibérica S.A

C/ Roger de Flor N° 293, Planta 1- 08025 Barcelona Tel.: 902 20 22 26 - Fax: 934 591 443

ITALIA - Amra SpA

Via Sant'Ambrogio, 23/25 - 20050 Bareggia di Macherio (MI) Tel.: 039 245 75 45 - Fax: 039 481 561

ÖSTERREICH - Chauvin Arnoux GmbH

Slamastrasse 29 / 2 / 4 - 1230 Wien Tel.: 01 61 61 961-0 - Fax: 01 61 61 961-61

SCANdINAVIA - CA Mätsystem AB

Box 4501 - SE 18304 TÄBY Tel.: +46 8 50 52 68 00 - Fax: +46 8 50 52 68 10

SCHWEIZ - Chauvin Arnoux AG

Einsiedlerstraße 535 - 8810 Horgen Tel.: 044 727 75 55 - Fax: 044 727 75 56

UNITEd KINGdOM - Chauvin Arnoux Ltd

Waldeck House - Waldeck Road - Maidenhead SL6 8BR Tel.: 01628 788 888 - Fax: 01628 628 099

MIddLE EAST - Chauvin Arnoux Middle East

P.O. BOX 60-154 - 1241 2020 JAL EL dIB (Beirut) – LEBANON Tel.: (01) 89 04 25 - Fax: (01) 89 04 24

CHINA - Shanghai Pu-Jiang - Enerdis Instruments Co. Ltd

3 F, 3 rd Building - N° 381 Xiang de Road - 200081 SHANGHAI Tel.: +86 21 65 21 51 96 - Fax: +86 21 65 21 61 07

USA - Chauvin Arnoux Inc - d.b.a AEMC Instruments

200 Foxborough Blvd. - Foxborough - MA 02035 Tel.: (508) 698-2115 - Fax: (508) 698-2118

http://www.chauvin-arnoux.com

190, rue Championnet - 75876 PARIS Cedex 18 - FRANCE
Tel.: +33 1 44 85 44 85 - Fax: +33 1 46 27 73 89 - info@chauvin-arnoux.fr
Exportación: Tel.: +33 1 44 85 44 38 - Fax: +33 1 46 27 95 59 - export@chauvin-arnoux.fr