Electrodes
 range

Range suitable for all your needs

Relable
Practical
pH electrodes
Redox electrodes
Reference electrodes
Conductivity cells
Dissolved oxygen sensors
Temperature sensors

General-purpose pH electrodes

These standard pH combination electrodes, which are particularly rugged and reliable, are designed for all test, manufacturing and teaching laboratories. They are ideal for routine measurements in wide-mouthed recipients (beakers, Erlenmeyer flasks, etc.) and offer excellent response times.

MICRO pH electrodes

Used mainly in industrial, pharmaceutical and medical research, these MICRO pH electrodes are designed for small recipients or devices with small sample sizes (haemolysis tubes, NMR tubes, electrophoresis plates, column outlets, etc.).

Combination electrodes

Electrode	BRV1A BRV1H	XRV1H	XRVST1H	BRV22A BRV22H	XRV22H	LRV22H	LRV6H	BRV4A BRV4H	BRV5A BRV5H
pH range	$\begin{aligned} & 0-14 \\ & 0-12 \end{aligned}$	0-12		$\begin{aligned} & 0-14 \\ & 0-12 \end{aligned}$	0-12			$\begin{aligned} & 0-14 \\ & 0-12 \end{aligned}$	
Shape of glass electrode	Spherical			Pointed	Reinforced pointed	Reinforced pointed for perforation	Reinforced pointed	Micro	
Electrode body	Glass	PVC	PVC	Glass	PVC	Glass	Polypropylene	Glass	Glass
Reference system	$\mathrm{Ag} / \mathrm{AgCl}$								
Reference electrolyte	KCI 1 mol/L						Polymer	KCI 1 mol/L	
Junction	Ceramic				Fabric	Ceramic	None	Ceramic	
Temperature sensor	No		$\begin{aligned} & \text { Yes } \\ & \text { Pt100 } \end{aligned}$	No	No				
Operating temperature	0 to $80^{\circ} \mathrm{C}$	0 to $60^{\circ} \mathrm{C}$		0 to $80^{\circ} \mathrm{C}$	0 to $60^{\circ} \mathrm{C}$			0 to $80^{\circ} \mathrm{C}$	
\varnothing and length under cap (mm)	12×120			$\begin{gathered} 6.5 \text { (tip) } \\ \times 120 \end{gathered}$	12×120	20×95	$\begin{gathered} 12 \text { (tip) } \\ \times 130 \end{gathered}$	$\begin{gathered} 6.5 \text { (tip) } \\ \times 120 \end{gathered}$	$\begin{gathered} 5.5 \text { (tip) } \\ \times 120 \end{gathered}$
Cable length	1 m								
BNC connection	BRV1A-BNC BRV1H-BNC	XRV1H-BNC	XRVST1H BNC (pH measurement) 5 -pin plug (temperature)	BRV22A-BNC BRV22H-BNC	XRV22H-BNC	LRV22H-BNC	LRV6H-BNC	BRV4A-BNC BRV4H-BNC	BRV5A-BNC BRV5H-BNC
S7 connection (screw-on)	BRV1A-S7 BRV1H-S7	XRV1H-S7		BRV22A-S7 BRV22H-S7	XRV22H-S7	-	-	$\begin{gathered} \text { BRV4A-S7 } \\ \text { BRV4H-S7-130 } \\ \text { BRV4H-S7 } \end{gathered}$	BRV5A-S7 BRV5H-S7
DIN connection	BRV1H-DIN	XRV1H-DIN		-	-	-	-	-	-
TV connection	BRV1H-TV	XRV1H-TV		-	XRV22H-TV	-	-	-	-
Recommended applications	General use	General use Protected electrode		Penetration in foodstuffs Fruit, cream, meat, cheese, dough		Blade system with reinforced tip for meat	Reinforced tip for cheese	Min. volume 0.5 mL in haemolysis tube	Mini volume

Measurement of redox potential

Redox potential is a measurement in millivolts (mV) used to qualify an aqueous solution as oxidizing or reducing.
This measurement can be performed using a pH -meter measuring mV and a metallic electrode designed for redox potential measurements. A redox potential sensor comprises a reference electrode composed of silver wire and a measuring electrode composed of a platinum or gold element. The value of the potential measured, E , depends on the ion concentration and the pressure of the gases present, as well as the pH when the H^{+}ions are involved in a couple.

Combination electrode

Electrodes for argentometry
Measuring electrodes
Reference electrodes

Electrode	BRAG1	BAG1	XAG1	BR43	XR43	BR44
Range	+/- 2,000 mV					
Electrode body	Glass		PVC	Glass	PVC	Glass
Metal	Silver rod			-		
Reference system	Mercurous sulphate	-		Mercurous sulphate	Mercurous sulphate	$\mathrm{Ag} / \mathrm{AgCl}$
Reference electrolyte	Saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$	-		Saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$	Saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$	KCl $1 \mathrm{~mol} / \mathrm{L}$ $\mathrm{KNO}_{3} 1 \mathrm{~mol} / \mathrm{L}$
Junction	Ceramic	-		Ceramic		
Temperature sensor	No					
Operating temperature	0 to $80^{\circ} \mathrm{C}$		0 to $60^{\circ} \mathrm{C}$	0 to $80^{\circ} \mathrm{C}$	0 to $60^{\circ} \mathrm{C}$	0 to $80^{\circ} \mathrm{C}$
\varnothing and length under cap (mm)	12×125		12×120	12×115	8 (tip) $\times 110$	12×120
Cable length	1 m					
BNC connection	BRAG1-BNC	BAG1-BNC	XAG1-BNC	-	-	-
S7 connection (screw-in)	BRAG1-S7	BAG1-S7	XAG1-S7	BR43-S7	XR43-S7	BR44-S7
DIN connection	-	-	-	-	-	-
TV connection	-	-	-	-	-	-
2 mm banana connection	-	-	-	BR43-BA2	XR43-BA2	BR44-BA2
4 mm banana connection	-	-	XAG1-BA4	BR43-BA4	XR43-BA4	BR44-BA4
Recommended applications	For argentometry measurements	For argent to be combined	surements, nce electrode	Reference for arge	electrodes tometry	Double junction for clogging agents

Conductivity cells \& temperature sensors

Electrical conductivity is the capability of a solution, metal or gas to allow an electric current to flow through it. In a solution, it is the anions (- charge) and cations (+ charge) which transport the current, whereas in a metal, it is the electrons. Conductivity is measured by applying an alternating current to a measuring cell. This cell is composed of a glass body supporting two to four platinum plates (also called poles) immersed in a solution. Like pH , conductivity measurements depend significantly on the temperature. When the temperature of a sample rises, its viscosity diminishes, leading to increased mobility of the ions present, thus increasing the conductivity. To measure conductivity correctly, you need to use a separate temperature sensor or a conductivity cell with a built-in temperature sensor.

Conductivity cell

with temperature sensor

Electrode	XCPST4	BCP4	XCP4	BT1	BT5
Range	0.1 ¢ to 200 mS			$-50^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
Electrode body	PVC	Glass	PVC	Glass	Polypropylene
Type of cell	2 platinum poles			-	
Cell constant (cm^{-1})	1			-	
Temperature sensor	$\begin{gathered} \text { Yes } \\ \text { Pt100 } \end{gathered}$	No		Pt100	
Operating temperature	0 to $60^{\circ} \mathrm{C}$	0 to $80^{\circ} \mathrm{C}$	0 to $60^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	0 to $90^{\circ} \mathrm{C}$
\varnothing and length under cap (mm)	12×115	11 (tip) $\times 100$	12×115	8×125	6 (tip) $\times 116$

Dissolved oxygen measurement

These rugged PVC dissolved oxygen probes are based on the principle of the Clark probe and can be used in a temperature range from 0° to $60^{\circ} \mathrm{C}$. The oxygen-permeable membrane is mounted on a washer (BO 23 and BOT 2). The assembly, maintained by the removable protective end-piece, is very easy to change. A temperature sensor is associated with the dissolved oxygen probe (BOT2 and BOT4) to enable automatic temperature correction.

Dissolved oxygen probes

Electrode	B023	Вот2	BOT4
Range	0 to 20mg/L		
Accuracy	$0.02 \mathrm{mg} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$		
Electrode body	PVC		
Type of sensor	Clark probe		
Temperature sensor	No	$\begin{gathered} \text { Yes } \\ \text { Thermistor } \end{gathered}$	
Operating temperature	15 to $30^{\circ} \mathrm{C}$		
\varnothing and length under cap (mm)	23 (tip) $\times 105$	25 (tip) $\times 135$	12×120
Cable length	1 m		
Range	B023	BOT2	BOT4
Recommended applications	General use		

Extensive choice of connection technologies		
	BNC type Ref-BNC	2 mm banana type Ref-BA2
	S7 screw-in type Ref-S7	4 mm banana type Ref-BA4
	DIN type Ref-DIN	Jack type Ref-JACK
	TV type Ref-TV	5-pole DIN type
Please contact us for other connection technologies and mechanical accessories		

Buffer solutions

For standard use, concentrated pH buffer solutions are proposed with 3 values: pH 4, pH 7 and pH 9. They are conditioned in $\mathbf{1 2 5} \mathbf{~ m L}$ flasks.

References to order	
Concentrated pH 4 buffer	P01700111
Concentrated pH 7 buffer	P01700112
Concentrated pH 9 buffer	P01700113
Other solutions	Please contact us

FRANCE
Chauvin Arnoux 190, rue Championnet 75876 PARIS Cedex 18 Tel: +33 144854438 Fax: +33146279559 export@chauvin-arnoux.fr www.chauvin-arnoux.com

UNITED KINGDOM

Chauvin Arnoux LTD
Unit 1 Nelson Ct, Flagship Sq, Shaw Cross Business Pk Dewsbury, West Yorkshire - WF12 7TH
Tel: +44 1924460494
Fax: +44 1924455328 info@chauvin-arnoux.co.uk www.chauvin-arnoux.com

MIDDLE EAST

Chauvin Arnoux Middle East

Fax: +961 1890424
camie@chauvin-arnoux.com
www.chauvin-arnoux.com

